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Abstrak

Selulosa dan kitin adalah dua biopolimer yang mempunyai ketersediaan paling melimpah di bumi. Kedua 
material ini telah menarik banyak minat dari banyak peneliti, terutama terkait dengan bentuk nanopartikelnya. 
Metode untuk mengekstrak menjadi bahan berskala nano sebagian besar dengan hidrolisis mineral atau 
asam cair, seperti asam sulfat dan asam klorida. Meskipun menghasilkan rendemen yang tinggi, terdapat 
banyak kerugian saat proses ekstraksi, seperti stabilitas termal rendah dan sulit untuk dimodifikasi gugus 
fungsinya karena adanya gugus sulfat, memiliki kecenderungan untuk teragregasi untuk hidrolisis dengan 
asam klorida, potensi degradasi selulosa yang berlebihan; adanya efluen dalam jumlah besar yang dihasilkan 
pada tahap netralisasi, dan adanya bahaya korosi pada peralatan dan lingkungan. Kelemahan-kelemahan 
tersebut dapat digunakan asam padat untuk isolasi selulosa nanokristal (CNC) dan kitin nanokristal (ChNC). 
Kemampuannya untuk mengkristal kembali dan dapat dihasilkan kembali membuat asam padat lebih ramah 
lingkungan. Kelebihan lainnya adalah sebagian besar asam dapat mengesterifikasi permukaan selulosa dan 
kitin, sehingga sangat layak untuk digunakan pada proses hidrolisis CNC dan ChNC. Tujuan dari makalah 
ini adalah untuk memberikan tinjauan kritis tentang kemajuan terkini terkait hidrolisis asam padat karena 
memiliki karakteristik yang menarik bahkan beberapa sifatnya lebih baik daripada metode konvensional.

Kata kunci: selulosa nanokristal (CNC), kitin nanokristal (ChNC), hidrolisis asam padat, esterifikasi

Abstract

Cellulose and chitin are two of the most abundant biopolymers on earth. These two materials have attracted 
a lot of interest from many researchers, especially related to the shape of the nanoparticles. Recently the 
method to extract them into nanoscale materials mostly by mineral or liquid acid hydrolysis, such as sulfuric 
and hydrochloric acid. Despite their high yield production, many disadvantages are produced by their use as 
a hydrolysis catalyst, such as low thermal stability and are difficult to be functionalized due to the presence 
of sulfate groups, tendency to be aggregated due to the bare surface charge density for hydrochloric acid 
hydrolysis, the potential excessive degradation of cellulose; and large amounts of effluent will be produced 
due to the neutralization stage and corrosion hazards to the equipment and environment. To overcome the 
drawback of those acids, solid acid can be used to produce cellulose (CNC) and chitin nanocrystals (ChNC). 
Its ability to re-crystallize and be regenerated makes it more environmentally friendly. Another advantage is 
that most of the acids can esterify the surface of cellulose and chitin which makes solid acids very suitable 
for use in CNC and ChNC hydrolysis processes. The purpose of this paper is to provide a critical review on 
recent progress related to solid acid hydrolysis since they have interesting characteristics even some of their 
attribute is better than the conventional method.

Keywords: cellulose nanocrystals (CNC), chitin nanocrystals (ChNC), solid acid hydrolysis, esterification 
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Introduction 

Nanomaterials, with any nanoscale outer 
dimensions, or with nanoscale internal or surface 
structures has already become a prominent 
area due to their unique physical and chemicals 
properties resulting in improved performance and 
characteristics of final products in numerous end-
user industries (Inshakova and Inshakov, 2017). 
Nanomaterials from bio-based resources have 
received a great deal of research interest in recent 
years as they are very likely to produce high-quality 
products with less environmental impact. The study 
of nanomaterials is not only about its extraction, 
but also the new applications in various fields. 
Among the nanomaterials, Cellulose Nanocrystals 
(CNC) and Chitin Nanocrystals (ChNC) are the 
most common representatives, which are green and 
sustainable nanomaterials derived from the natural 
most widely biomass. The type of nanomaterials 
extracted is determined by the processing methods: 
most of CNC and ChNC are extracted by chemical 
treatments, and cellulose nanofibrils (CNF) 
and chitin nanofibrils (CNF) are produced by 
mechanical or chemical treatments. The dimension 
and crystallinity of CNC and CNF or ChNC and 
ChNF are the main differentiators. Most CNF and 
ChNF shape consist of mixtures of amorphous and 
crystalline cellulose chains with a length of up to 
several microns, while CNC and ChNC are highly 
crystalline shape with a length typically less than 
500 nm (Moon et al., 2011).

From a top-down perspective, cellulose and 
chitin contain crystalline and amorphous structures. 
These structures were formed by the aggregation 
of each of the structure chains via intra- and 
intermolecular hydrogen bonding. The crystalline 
phase of cellulose (CNC) and chitin (ChNC) 
can be separated from its amorphous phase by 
acid hydrolysis (Chen et al., 2017). Both of the 
crystalline structures have been applied in the fields 
of pharmaceutical and biomedical engineering, 
food, sensor, paper and packaging, optical and 
electronic devices, and many more (Huang et al., 
2013; Jung et al., 2015; Gopi et al., 2017; Salaberria 
et al., 2017). Many researchers have been used the 
mineral acid hydrolysis method to extract crystalline 
parts because this method has the highest yield 
compared to other methods such as mechanical 
treatment and enzymatic hydrolysis (Moon et al., 
2011; Song et al., 2018). The mechanical method 
maybe can produce a 100% yield, but this method 
is not a selective method, it means both of the 
crystalline and amorph regions will be affected by 
the mechanical force, moreover a lot of CNF will 

be formed during the process (Trache et al., 2017; 
Xie et al., 2018). The main shortcomings of this 
method are the potential excessive degradation of 
initial material, large amounts of effluent released 
from the neutralization stage process, and corrosion 
hazards of high concentration of strong acid to the 
equipment and environment (Chen, Xiaoquan Deng, 
Xueyan Shen, Wenhao, 2012; Amin et al., 2015; 
Zhang, Tsuzuki and Wang, 2015). As an alternative, 
solid acids can be used to hydrolyze chitin and 
cellulose for sugar production with the advantage of 
easing acid recovery and the hydrolyzed materials 
can be functionalized with carboxyl groups (Chen 
et al., 2016).

Many reviews summarized their source, 
chemistry, and applications of cellulose and chitin 
nanocrystals (Habibi, Lucia and Rojas, 2010; 
Duran, Paula Lemes and B. Seabra, 2011; Zeng et 
al., 2012; Wan and Tai, 2013; Abdul Khalil et al., 
2016; Trache et al., 2017; Xie et al., 2018), but from 
our best knowledge, no review has been reported 
focused on the use of solid acid to prepare chitin and 
cellulose nanocrystals. The present review mainly 
focuses on the advances in preparation, properties, 
and potential application of CNC and ChNC by 
solid acid hydrolysis.

The Structure and Extraction Method of 
Cellulose and Chitin Nanocrystals

The structures of chitin and cellulose are very 
similar. Both are biological carrier and supporting 
materials in living plants and animals that grow in 
size from simple molecules in the nanometer range 
and composites in the micrometer range from highly 
crystalline fibrils (Fan, Saito and Isogai, 2008).

Cellulose, the most abundant biopolymer on 
earth have been attracted many researchers and 
industrial players in recent decades because of their 
excellent low toxicity, low density, biocompatibility, 
and biodegradability for numerous utilizations 
(Kargarzadeh et al., 2018). The term “cellulose” 
and its molecular formula (C6H10O5) was first used 
in 1839 by Anselme Payen (Klemm et al., 2005).  
It can not only be separated from many biomass 
resources such as wood, cotton, hemp, and other 
plant-based materials, but cellulose can also be 
synthesized by algae, tunicates, and some bacteria 
(Henriksson et al., 2007; Iwamoto, Nakagaito and 
Yano, 2007; Siró and Plackett, 2010). 

Cellulose can be described as a long linear 
polymer chain of ringed glucose molecules 
consisting of 1,4-anhydro-D-glucopyranose units 
and has a flat ribbon-like conformation (Siqueira, 
Bras and Dufresne, 2010; Dufresne, 2013). 
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Cellulose plays an important role in abundant 
organic raw materials. It can be used for different 
purposes all over the world in different stages 
including paper, composites, constructions, 
additives, pharmaceutics, coatings, and many more 
(Li et al., 2013; Lee et al., 2014; Seabra et al., 2018; 
Awang et al., 2019; Lu et al., 2019). The market 
demand for industry-based cellulose reached almost 
350 million tons in 2013 and continues to grow by 
2.7% a year. 

Cellulose can be distinguished into four different 
polymorphs, those are cellulose I, II, III, and IV as 
shown in Figure 1. In its natural form, cellulose 
can be found both in the crystalline and amorphous 
phases of cellulose I. Infra-red spectroscopy and 
x-ray diffraction studies of cellulose organization 
in plants have shown that the crystalline regions 
have a bigger portion than the amorphous regions 
(Kroschwitz, 1985). The amorphous regions have 
lower density compared to crystalline regions 
and are easily available for bonding with other 
molecules, e.g. water. With the appropriate chemical 
hydrolysis method, cellulose microcrystals or 
nanocrystals (CMC/CNC) can be extracted from 
cellulose fibers. Meanwhile, if we use a mechanical 
method to handle cellulose fibers, mainly we could 
get micro or nano-fibrillated cellulose (CMF/CNF) 
(Siqueira, Bras and Dufresne, 2010).  Cellulose II, or 
regenerated cellulose, is the most stable crystalline 
form obtained by regeneration of cellulose I with 
a strong alkali. The stable feature of cellulose II 
is mainly because of additional hydrogen bond 
per glucose residue and antiparallel layout atoms 
compare to cellulose I which has atoms direction 
in parallel shape (Saxena and Brown, 2005; Aulin 
et al., 2009). Cellulose III is obtained by ammonia 
treatment of cellulose I and II, meanwhile, cellulose 
IV is produced by heating modification of cellulose 
III (Aulin et al., 2009). Figure 2 shows the basic 
chemical structure of cellulose, showing that a dimer 
called cellobiose appears as repeating segments. 
One monomer of cellulose contains three hydroxyl 
groups and these groups have the ability to form 

strong hydrogen bonds. Hydrogen bonds together 
with van der Waals forces form the basic cellulose 
fibers (Klemm et al., 2011; Ng et al., 2015).

After cellulose, chitin is the second most 
common biopolymer on the planet and is obtained 
from crab, shrimp, and lobster shell has been 
attracted wide usability due to the presence of 
the acetamido group on the second carbon of the 
pyranose ring (Barikani et al., 2014; Salaberria 
et al., 2017). As shown in Figure 3, Structure of 
chitin is a linear polysaccharide containing β-(1,4)-
2-deoxy-2-acetamido-D-glucopyranose repeating 
unit (Goodrich, J. D.; Winter, 2007). An acetamido 
group (-NHAc) instead of a hydroxyl group at the 
C-2 positions of chitin distinguished chitin and 
cellulose (Duan et al., 2018).

Chitin or poly (β-(1→4)-N-acetyl-D-
glucosamine) was first proposed by Odier in 
1823 as a material for insect cuticles. It kept its 
structure in outer shape after several treatments 
with a hot potassium hydroxide solution (Rudall 
and Kenchington, 1973). Chitin can be synthesized 
from many living organisms and in its natural 
form. Chitin is composed as structured crystalline 
microfibrils that form main structural components 
in the exoskeleton of arthropods or in the cell walls 
of fungi and yeast (Rinaudo, 2006). The degree 
of acetylation (DA) of chitin is typically around 
0.90, indicating the presence of large amounts of 
2-acetamido-2-deoxy-d-glucopyranose, which 
contributes to the presents of antimicrobial activity  
(Salaberria et al., 2015; B. Duan et al., 2018). 

Figure 1. Polymorphs of cellulose (Panić et al., 
2013)

Figure 2. Molecular structure of cellulose (n=DP, 
degree of polymerization) (Visanko, 2015)

Figure 3. Molecular structure of chitin (Rodríguez 
et al., 1989)
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The crystalline phase, depending on its source, 
of chitin can be differentiated into α, β, and γ forms. 
All of them are assembled by the H-bonds network 
which controls the solubility, swelling, and reactivity 
(Younes and Rinaudo, 2015). The chain structure 
of α-chitin is arranged alternately antiparallel, 
meanwhile, they are all parallel in β–chitin, and for 
the γ-chitin, it can be shown that two chains run in 
one direction and another chain runs in the opposite 
direction (Sugiyama et al., 1999; Jang et al., 2004). 
The α-chitin occurs mainly in arthropods, fungi, 
and the cysts of Entamoeba, β-chitin is obtained 
from the pen of the Loligo squid, γ-Chitin exists in 
cocoon fibers of the Ptinus beetle and the stomach 
of Loligo (Jose and Alfredo, 1999).

α-chitin has strong hydrogen bonding between its 
layers, while β-chitin has weak intrasheet hydrogen 
bonding. That is the reason for α-chitin has lower 
reactivity and dissolves in various solvents compare 
to β–chitin (Kurita et al., 1993, 1994). For γ–chitin 
since Rudal and Kenchington (1973) proposed the 
invention, only a few investigations have focused 
on γ- chitin because of the unusual nature of the 
raw material. Kaya et al., (2017) extract chitin 
from cocoon of the moth (Orgyia dubia) and they 
found that γ-chitin has different physicochemical 
characteristics, yet closer in structure to α-chitin 
than β-chitin.

Renewable polysaccharides such as cellulose 
and chitin which are composed of crystalline and 
amorphous domains are candidates for organic 
nanoscale materials. The amorphous domains 
can be eliminated under certain methods such as 
acid hydrolysis, allowing the crystalline domains 
with high modulus can be extracted in nanoscale. 
The resulting nanocrystals can be used for many 
purposes such as nanocomposite, drug delivery 
system, waste removal, etc.

Cellulose nanocrystals are nanoparticles that can 
be derived from many sources such as, cotton (Sun 
et al., 2016; Chen et al., 2019; Ling et al., 2019), 
wood (Beck-candanedo, Roman and Gray, 2005; 
Filson and Dawson-Andoh, 2009; Abushammala, 
Krossing and Laborie, 2015; Miao et al., 2016), 
bamboo (Brito et al., 2012; Yu et al., 2012; Cao and 
Liu, 2015; Hong, Chen and Xue, 2016), tunicate 
(Zhao et al., 2015; Cao et al., 2017; Tang et al., 
2017), wheat straw (Oun and Rhim, 2016; Liu et al., 
2019), corn (Huang et al., 2017; Liu et al., 2019), 
fruits (Chieng et al., 2017; Trilokesh and Uppuluri, 
2019), and ramie (Grishkewich et al., 2017; 
Kusmono, Wildan and Ilman, 2019). The origin of 
cellulose will determine the dimensions of CNC. 
For example, CNC derived from hardwood possess 
a dimension of 3 - 5 nm in diameter and 100 - 300 

nm in length, whereas CNC extracted from tunicate 
have a lateral and length dimension of 15 - 30 nm and  
1000 - 1500 nm respectively  (Elazzouzi-Hafraoui 
et al., 2008; Peng et al., 2011). Meanwhile, chitin 
nanocrystals can result from many resources such 
as crab (Gopalan Nair and Dufresne, 2003; Kiruba 
et al., 2011), shrimp (Einbu, 2007; Goodrich, J. 
D.; Winter, 2007), squid (Kurita et al., 1994), and 
riftia (Morin and Dufresne, 2002; Perrin et al., 
2014), each of them has a different dimension in the 
range of 10 – 50 nm in diameter and 150 – 2200 
nm in length (Paillet and Dufresne, 2001; Morin 
and Dufresne, 2002; Lu, Weng and Zhang, 2004; 
Phongying, Aiba and Chirachanchai, 2007). The 
first method for preparing a suspension of chitin 
nanocrystals happened in 1959 by Marchessault et 
al (Marchessault, Morehead and Walter, 1959). In 
this process, 20 g of purified chitin was refluxed in 
a 2.5N hydrochloric acid (HCl) solution for 1 hour, 
and the resulting hydrolyzed chitin was dispersed in 
rod-shaped particles and concentrated in the liquid 
crystal phase.

In recent years, several methods have been 
investigated for the isolation of CNC and ChNC, 
they are, chemical acid hydrolysis (Lahiji et al., 
2010; Li-rong et al., 2011; Wang et al., 2012; Yu 
et al., 2013; Liu et al., 2018; Xie et al., 2019), 
enzymatic hydrolysis (Chen et al., 2012; Xu et al., 
2013; Anderson et al., 2014), mechanical refining 
(Amin et al., 2015; Y. Li et al., 2016), ionic liquid 
treatment (Tan et al., 2015), subcritical water 
hydrolysis (Novo et al., 2016), oxidation method 
(Fan, Saito and Isogai, 2008; Visanko et al., 2014; 
Istomina et al., 2019) and combined processes (Li, 
Wang and Liu, 2011; Phanthong et al., 2015; An 
et al., 2016; Jiang et al., 2018; Seta et al., 2020). 
Among those processes, acid hydrolysis is the 
most commonly used to produce nanomaterials, 
especially ChNC (Moon et al., 2011; Zeng et al., 
2012) because of their simplicity, high crystallinity 
product, and high yield ability. Theoretically, acid 
aqueous solutions can hydrolyze the amorphous and 
crystalline domains of polysaccharides structures. 
The main function of acid catalysis during CNC and 
ChNC production is to hydrolyze and release the 
amorphous structure. This acid hydrolysis process 
will release hydronium ions for hydrolytic cleavage 
of glycosidic bonds in cellulose molecular chains 
within amorphous regions along the cellulose fibrils 
(Ng et al., 2015).

As shown in Figure 4 and Figure 5 The 
main principle for making nanocrystals of chitin 
and cellulose is based on the different kinetics 
of hydrolysis between them and the acid. Acid 
concentration and hydrolysis time are the most 
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important factors in determining the particle size and 
yield of nanocrystals. The swelling and hydrolysis 
of the amorphous phase occur much faster than the 
crystalline phase due to the periodic proximity of 
the molecular chains within the crystalline domain. 
This is why controlling hydrolysis variables is so 
important to produce nanocrystals of the desired 
dimensions and good yield  (Zeng et al., 2012). The 
shape of the particles, the degree of crystallinity, 
and the size of the crystalline fibers depend on the 
natural source of the material and the method of 
extraction.

Mineral acid hydrolysis is one of the early 
developed and widely used to isolate and prepare 
CNCs and ChNCs. At present, primarily mineral 

acids, such as sulfuric acid for CNC and hydrochloric 
acid for ChNC are usually used for the isolation 
nanocrystals. Sulfuric acid is the most typically 
used to extract CNC. In recent years a lot of articles 
have been published from 2010-2020 as we can see 
from Table 1. Regarding the market visibility to 
fulfill larger quantities of industrial needs, sulfuric 
acid is more suitable than hydrochloric acid. In 
2008, sulfuric acid was the most widely produced 
chemical in the United States, almost 10 times more 
than hydrochloric acid (Börjesson and Westman, 
2015). Sulfuric acid produces a negative surface 
charge on the particles, leading to a more stable 
suspension. In general, the hydrolysis process 
requires a sulfuric acid concentration of 60-65%, 

Figure 4. Schematic illustration for the preparation process of cellulose nanocrystals (CNC)

Figure 5. Schematic illustration for the extraction method of chitin nanocrystals (ChNC) (Nikolov et al., 
2010)
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Nanomaterials 	
	

Raw Materials Conditions References

CNC

Soy hulls 40°C, 30 or 40 minutes, 
H2SO4 64%

Flauzino Neto et al. (2013)

Tea Leaf Waste 
Fibers

45°C, 45 minutes, H2SO4 65% Rahman et al. (2017)

Jackfruit peel 37°C, 1 hour, H2SO4 65% Trilokesh and Uppuluri (2019)
Cotton/ 
Cotton Linter

45-55°C, 5-25 minutes, 
H2SO4 50-64%

Chang et al. (2010); Morais et al. (2013); 
Sun et al. (2016); Csiszár and Nagy 
(2017)

Flax 45°C; 25, 240 minutes, 
H2SO4 64%

Cao et al. (2008, 2013); Csiszár and 
Nagy (2017)

Wood 35-80°C, 30-240 minutes, 
H2SO4 46-68.4%

Bondeson, Mathew and Oksman (2006); 
Durán et al. (2011); Wang, Zhao and Zhu, 
(2014); Beltramino et al. (2016); Dong, 
Bortner and Roman (2016); Lin, Enomae 
and Chang (2019); Kandhola et al. (2020)

Sisal Fibers 45°C, 30 minutes, H2SO4 60% Morán et al. (2008)
Bamboo 30-60°C, 12-120 minutes, 

H2SO4 45-75%
Brito et al. (2012); Yu et al. (2012); Chen 
et al. (2013); Hong, Chen and Xue (2016; 
Wijaya et al. (2019)

ChNC

Crab Shell 60°C, 60 minutes, H2SO4 64% Oun and Rhim (2018)
Shrimp Shell 60-100°C, 90-180 minutes, 

H2SO4 64%
Gopi et al. (2017); Oun and Rhim, (2020)

Lobster Shell 60°C, 90 minutes, H2SO4 64% Li et al. (2016)

Table 1. Cellulose and chitin nanocrystals prepared by sulfuric acid hydrolysis from different origins

a reaction temperature of 40-50°C, and a reaction 
time of 30-60 minutes. Some of those research 
results are shown in Table 1.  

Unlike sulfuric acid hydrolysis, a lot of 
publications used hydrochloric acid to extract 
chitin nanocrystals. Meanwhile, many researchers 
prefer to use sulfuric acid than hydrochloric acid 
because this acid can make CNC very easy to be 
agglomerated in an aqueous system, because of 
the presence of less negative charge groups on its 
surface (Shang et al., 2019). Hydrochloric acid has 
a high ability to swell chitin and cellulose, making 
it easier to break intramolecular and intermolecular 
hydrogen bonds in the crystalline region. Some of 
the researches that used this acid can be seen in 
Table 2.

The CNC and ChNC isolation derived from 
different solid acid hydrolysis

Despite the advantages of liquid and mineral 
acid hydrolysis, there are some drawbacks of this 
acid hydrolysis, are 1) it has low thermal stability 
and is difficult to be functionalized due to the 
presence of sulfate groups (for sulfuric acid-induced 
nanomaterials); 2) it tends to be aggregated due to 
the bare surface charge density (for hydrochloric 

acid-induced nanomaterials) (Yu et al., 2013); 3) 
the potential excessive degradation of cellulose; 
and 4) large amounts of effluent will be produced 
due to the neutralization stage and corrosion 
hazards to the equipment and environment (Chen et 
al., 2016). To overcome these problems, solid acid 
instead of liquid acid can be used as a catalyst in 
the hydrolysis process considering its advantages: 
1) highly safe for the storage; 2) low transportation 
cost; 3) more environmentally friendly; 4) caused 
less corrosion to process equipment; and 5) possible 
surface modification during hydrolysis (Yeganeh, 
Behrooz and Rahimi, 2017; Seta et al., 2020). 
Some of the solid acids such as oxalic, maleic, and 
phosphotungstic have been reported can be used 
to produce nanomaterials. Most of the acids have 
the advantage of donating carboxylic structure and 
stability, the mechanism of the hydrolysis according 
to the structure is 1) maleic acid molecules react with 
β-1,4-glucosidic linkages/hydrogen bonds between 
anhydroglucose units in cellulose and chitin chains 
and release small and uniform particle size; 2) 
the acid can hydrolyze the disordered regions of 
materials to release the crystalline region; and 3) 
the acid can catalyze the esterification process of 
hydroxyl groups on the exposed chains and produce 
carboxylated CNC and ChNC.
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Oxalic acid

Oxalic acid is a dicarboxylic organic acid 
compound with the formula C2H2O4, which his 
appearance as a white crystalline solid and forms a 
colorless solution in water, because of its appearance 
some people call it “crab acid”. It is an inexpensive 
chemical and can industrially be produced from 
plant-based resources and its melting point is around 
104–106°C. Oxalic acid is industrially produced in 
three main ways: oxidation of different agricultural 
carbohydrate waste products (corn cobs, sawdust, 
oat hulls, etc.); fermentation processes caused by 
by-products in citric acid production; and pyrolysis 
of inorganic formats. This dicarboxylic acid finds 
many uses in the textile and leather industries and 
as an intermediate in organic syntheses (Sneeden, 
1982). They dissolve in from 8 to 11 parts of water 
at 15.5°C and completely dissolve in water at 100°C 
(Hussain, 2012).

Oxalic acid hydrolysis for the isolation of CNC

Chen et al (2016) used oxalic acid at a 
concentration of 50-70 % and 90-120oC for the first 
time to produce cellulose nanocrystals from bleached 
eucalyptus kraft pulp. The CNC has good dispersion 
and contains carboxylic acid group content of about 
0.1–0.4 mmol/g. Thermal degradation temperature 
until CNC can reach 322oC. The crystallinity index 

(CrI) was approximately 81%. The diameters of the 
CNC were approximately 15 nm and the shortest 
length was 273 nm. Xu et al (2017) also used 
oxalic acid at concentration 0.11-1.11 mol/L and 
hydrolysis temperature 80–100oC to hydrolyzed 
bleached birch kraft pulp. The resulted yield was 
about 85%. Maximum thermal degradation was 
355oC, higher than CNC made by sulfuric acid 
hydrolysis (200oC). The obtained diameter was 
8-15 nm, length 200-1200 nm, and carboxylic 
groups content was 0.1-0.3 mmol/g. The route of 
ChNC and CNC made by oxalic acid hydrolysis can 
be seen in Figure 6(a) and the resulted CNC and 
ChNC in Figure 6(b) and Figure 6(c).  

Li et al (2017) used softwood dissolving 
pulp and mixed it with oxalic acid at 110oC for 
about 15-120 minutes resulted CNC which has 
an average length of 150–220 nm and a width of 
16–20 nm. Interestingly the yield of this method 
with 30 minutes hydrolysis time could reach 
99%. This result was very high indicated that the 
use of oxalic acid can be an effective catalyst to 
hydrolyze cellulose into CNC. Figure 6(e) shows 
one of their research results was crossed polarized 
in an aqueous solution that can be used in the next 
nano-sized function. Another experiment was 
conducted by Xie et al (2019), they use bleached 
eucalyptus kraft pulp and mixed oxalic acid with 
sulfuric acid to reduce temperature (80oC) and 
increase yield (>70%). CNC has a diameter range 

Table 2. Cellulose and chitin nanocrystals prepared by hydrochloric acid hydrolysis from different resources

Nanomaterials 	
	

Raw Materials	 Conditions References

CNC

Wheat Straw 24 hours, HCl 32% Huntley et al. (2015)
Cotton/ 
Cotton Linter

12 hours, HCl 35% Lorenz et al. (2017)

Wood 110°C, 90-180 minutes, 
HCl 37%

Cheng et al., 2017; Shang et al. (2019)

Filter Paper 110°C, 90 minutes, HCl 37% Boujemaoui et al. (2015)
Bamboo 60°C, 120 minutes, HCl 37% Zhang et al. (2014)

ChNC

Crab Shell 80-100°C, 90 minutes, HCl 3M Gopalan Nair and Dufresne (2003); 
Lu, Weng and Zhang, 2004; Tzoumaki, 
Moschakis and Biliaderis (2010); Goetz 
et al., (2016); Jalvo, Mathew and Rosal, 
(2017)

Lobster Shell 100oC, 90 minutes, HCl 3 M Salaberria, Labidi and Fernandes (2014)
Shrimp Shell 90-95°C, 90 minutes, HCl 3 M Goodrich and Winter (2007); Perrin et al. 

(2014); Tzoumaki et al. (2015); Singh et 
al. (2020)

Squid Pen 90°C, 90 minutes, HCl 3 M Paillet and Dufresne (2001)
Riftia Tubes 90°C, 90 minutes, HCl 3 M Morin and Dufresne (2002)
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of about 5-20 nm and a length of 150-400 nm. The 
use of sulfuric acid could be reduced from 55 g/g 
CNC into 2.4 g/g CNC and 91±2% of oxalic acid 
can be reobtained by simple recrystallization. Song 
et al (2018) produced CNC by ball mill as a pre-
treatment before hydrolyzing cellulose in various 
concentrations of oxalic acid. The optimum yield 
(±60%) was obtained by 60% oxalic acid, 80oC 
hydrolysis temperature, and 4 hours hydrolysis 
time. This hybrid process could extract CNC with 
good properties, such as maximum degradation 
temperature of 332 ℃, 300-400 nm in length, 
and crystallinity index around 70.7%. Jia and Liu 
(2019) compared oxalic acid and sulfuric acid 
straightly. The filter paper was their raw material. 
The optimum condition of oxalic acid hydrolysis 
was 8.75% oxalic acid solution, reaction time 15 
minutes, and temperature 110oC. In this condition 
they can get 93.77% of yield and they reported that 
the result was higher than previous researches. The 
conclusions of their work were oxalic acid CNC 
and sulfuric acid CNC have similar basic structural 
properties, such as UV–Vis transmittance, average 

particle size, Zeta potential, and Crl value. But, as 
we can see in Figure 6(d), they also found that the 
brilliant snowflake-like pattern of CNC film was 
observed through oxalic acid instead of sulfuric 
acid, and carboxylated CNC produced with oxalic 
acid easily forms a liquid crystal phase. Moreover, 
they suggested potential application prospects in 
optical devices and chiral separation according to 
its CNC properties.

Jia et al. (2017) compared three different raw 
materials and reacted with this dicarboxylic acid. 
They were used bleached eucalyptus pulp (BEP), 
spruce dissolving pulp (SDP), and cotton-based 
qualitative filter paper (QFP) as their raw research 
materials. The highest yield obtained by QFP (5.81%) 
with 50% oxalic acid solution was used at 100oC, 
300 rpm, and 1hour reaction time. The same group 
tried to increase the yield by adding disk milling 
(DM) pretreatment of bleached kraft eucalyptus 
pulp (Jia, Bian, et al., 2017). They succeed increased 
it from 5% to 35% as shown in Figure 6(f). The 
CNC was applied as film and 3D printed patterns. 
The prepared film produced via hybrid DM-oxalic 

Figure 6. (a) Schematic diagram of oxalic acid hydrolysis (Chen et al., 2016) (b) AFM Image of CNC (Chen 
et al., 2016) (c) AFM image of ChNC (Yuan et al., 2020) (d) POM images of CNC composite film (Jia and 
Liu, 2019) (e) A concentrated aqueous suspension of CNC observed between crossed polarizers (Li, Hen-
schen and Ek, 2017) (f) The photo of CNC composite film (Jia, Chen, et al., 2017)
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acid method has very high transmittance and super 
low haze with great values of 90.6% and 6.6% at the 
wavelength of 600 nm. The prepared film can hold 
and maintain its appearance without visible change 
at 150°C for 4 hours. This characterization makes 
it very promising as electronic devices fabrication. 
The resulting 3D printing with porous structures 
shown this material can be potentially applied in 
tissue engineering scaffolds.

Oxalic acid hydrolysis for the isolation of ChNC

The use of oxalic acid to produce chitin 
nanocrystals was introduced by Yuan et al (2020). 
They mixed oxalic acid with choline chloride 
under mixing treatment at 100℃ for 1 hour and 
3 hours. The highest yield reached 79.5% and the 
morphology of ChNC was 530±89 nm in length and 
49±8 nm in diameter. The crystallinity index could 
reach 90.09% and the temperature at maximum 
degradation was 367.2oC 

Phosphotungstic acid (PTA)

Phosphotungstic acid (PTA) is odorless acid 
and one of the strongest heteropoly acids with the 
chemical formula H3PW12O40. Its melting point is 
89oC and the solubility is 200 g/ 100 ml in water. As 
a heteropoly acid, PTA has some advantages, such 
as (1) high activity, thermal stability, and selectivity; 
(2) high solubility in polar solvents; (3) very high 

proton mobility of heteropolyacid anions (Qiang et 
al., 2016). Shimizu et al (2009) demonstrated that 
phosphotungstic acid has abundant Bronsted acid 
sites which can break the β-1, 4-glycosidic bonds 
in cellulose and could hydrolyze cellulose into 
glucose.

The use of PTA as a chemical in cellulose 
hydrolysis introduced by Liu et al (2014). They used 
bleached hardwood pulp as raw material and 50-85% 
of PTA mixture for 15-30 hours of hydrolysis time 
and 90oC of hydrolysis temperature. The optimum 
condition was obtained at 90oC for 30 hours by the use 
of 75% (w/w) PTA, the dimension of rod-like CNC 
was 15-25 nm in width and 600-800 nm in length as 
shown in Figure 7(b). The crystalline index of CNC 
was 85% and maximum degradation has happened 
at 350oC. In this experiment, they recycled the PTA 
residue after the hydrolysis process and after 5 cycles 
the yield of the CNC could reach 58%, which was 
very close to the maximum yield of the regular process 
(60%). A higher yield can be obtained to extract a 
larger dimension. Qian et al (2016) tried to extract 
microcrystalline cellulose (MCC) from eucalyptus 
kraft dissolving pulp. The MCC has yielded of around 
93.62%, length of 13.77–26.17 µm, and crystallinity 
of 76.37%. They used 58 % (w/w) HPW catalyst and a 
solid-liquid radio of 1:40, under the reaction condition 
at 90 °C for about 2 hours. From both experiments, 
we can see that the reaction time and solid-liquid 
ratio of acid mixture very determined the resulting 
nanomaterials.

Figure 7. (a) Schematic diagram of phosphotungstic acid hydrolysis simultaneous mechanochemical activa-
tion (Lu et al., 2016)  (b) AFM image of resulted CNC (Liu et al., 2014) (c) AFM image of resulted CNC (Lu 
et al., 2016) (d) SEM image of pristine bamboo (Lu et al., 2016)
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Lu et al (2016) used mechanochemical to extract 
CNC from bamboo pulp. From Figure 7(d), bamboo 
pulp along with 12.5 % PTA solution were milled by 
20,6 mm agate balls in an agate jar for 1.5-2.5 hours. 
Then, after removing agate balls from agate jar, the 
pulp and PTA solution were introduced into a round-
bottomed flask which was kept the temperature at 90 
°C in an oil bath for 4.5−5.5 hours. Phosphotungstic 
acid concentration of 13.5%, reaction time of 4.7 
hours, and ball milling time of 2.2 hours produced 
the optimum yield (88.4%). Figure 7(a) show the 
route of the method and Figure 7(c) show the short 
rod-like cellulose nanocrystals obtained with the 
range of 200−300 nm in length and 25−50 nm in 
width. The crystallinity index reached 79.6% and 
the maximum degradation was 348oC. 

From those experiments, the use of a ball mill 
could assist in a shorter reaction time and increased 
yield. But the crystallinity index would be reduced. 
Ball mill treatment is known as a process that can 
decrease the crystalline structure of materials (Feng, 
Han and Owen, 2004). 

Citric acid

 This weak acid that occurs naturally in 
citrus fruits has the chemical formula C6H8O7. 
In biochemistry, it is an intermediate in the citric 
acid cycle, which occurs in the metabolism of all 
aerobic organisms. Its melting point at 156oC and its 
solubility in water could reach 84% w/w at 100oC. 
The production of citric acid reaches more than two 
million tons per year to fulfill the raw material of 
acidifier, flavoring, and chelating agent industries 
(Apleblat, 2014).

The first use of citric acid to extract nanomaterials 
is carried out by Yu et al (2016). They produced 
CNC by citric acid/hydrochloric acid mixture and 
microcrystalline cellulose as the raw material. The 
resulting CNC has a rod-like shape with the size of 
200−250 nm in length and 15−20 nm in width. Yield 
resulting from this mixture reached 89.5%, highest 
crystallinity index was 91.4% and maximum thermal 
degradation was 377.9oC. The same author also used 
the same raw material and acid mixture with the 
addition recycle citric acid as the variables. After 
two recycling processes, the resulting CNC still has a 
good yield, of which fresh citric acid was 87.8% and 
86.5% after the second recycle. The morphological 
analyses also showed good results, where 220.8 
± 26.6 nm in length and 13.2±2.7 nm in diameter. 
Thermal degradation after the second process is also 
not so different which is 347.0oC compare to 357.5oC 
from its pristine citric acid (Yu et al., 2019).

Maleic acid

Maleic acid is an organic acid and has chemical 
formula HO2CCH=CHCO2H. From its structure, 
maleic acid has dicarboxylic acid structure, a 
molecule with two carboxyl groups.  Maleic acid 
is an industrial raw material for the production 
of glyoxylic acid by ozonolysis and an adhesion 
promoter for different substrates, such as nylon 
and zinc coated metals. Maleic acid is high soluble 
in water (78.8 g per 100 ml of water at 25 °C and 
392.6 g per 100 ml of water at 97.5°C) (Bährle-
Rapp, 2007) and its melting point 130 - 131oC 
(National Center for Biotechnology Information, 
2020). 

The first use of maleic acid as a catalyst to 
hydrolyzed cellulose was made by Mosier et al 
(2001). They used microcrystalline cellulose as 
a raw material and found that maleic acid could 
hydrolysis cellobiose with minimal glucose 
degradation. In 2008, Lu and Mosier (2008) 
hydrolyzed hemicellulose from corn stover to 
produced xylose. They found that   0.2 M maleic 
acid can produce 80–90% xylose yields at reaction 
temperatures between 100 and 150oC.

Wang et al (2017) used maleic acid to produce 
CNC and cellulose nanofibers (CNF) from bleached 
eucalyptus kraft pulp. The mean CNC length was 
around 450–650 nm and the aspect ratio was 60 
and 90. The research group by Bian et al (2017a; 
2017b) found that the yield of CNC by maleic acid 
hydrolysis was shown low number (around 6%). 
The low strength of acid was the reason why they 
got that result. Instead of the low yield, maleic 
acid can produce CNC with good characteristics, 
such as good dispersibility (thanks to two carboxyl 
groups of maleic acid), can be recycled, and 
better dimension than CNC made by sulfuric acid 
hydrolysis (Yeganeh, Behrooz and Rahimi, 2017). 
Seta’s research group tried to overcome the yield 
problem by combining ball mill method as a pre-
treatment before maleic acid hydrolysis as we can 
see in Figure 8(a). The ball mill treatment can open 
up the firm structure of bamboo pulp, thus maleic 
acid molecules are easier to react and extracted 
more CNC. The yield by this hybrid method could 
increase 10 times and reduce the length of the CNC 
as shown in Figure 8(b) (Seta et al., 2020). The 
resulting CNC also showed high colloidal stability 
after 5 days.

The work to produce ChNC from shrimp shells 
by maleic acid hydrolysis was worked by Yang’s 
research group, they used hydrolysis temperature 
of 110oC, 3 hours hydrolysis time, and 80% maleic 
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Figure 8. (a) Schematic diagram of ball mill pretreatment and maleic acid hydrolysis (Seta et al., 2020) (b) 
AFM Image of resulted CNC (Seta et al., 2020) (c) Schematic diagram of ChNC@NaLS@AgNPs nanocom-
posites (Yang et al., 2020) (d) TEM image of ChNC@NaLS@AgNPs nanocomposites (Yang et al., 2020)

Figure 9. (a) Schematic diagram of phosphoric acid CNC made by hybrid method (Tang et al., 2015) (b) 
Photos of solution-cast samples of S-CNCs (left), P-CNCs (middle), and H-CNCs (right) (Espinosa et al., 
2013) (c) TGA traces and (d) derivatives weight loss of CNC made by phosphoric, sulfuric and hydrochloric 
acid (Espinosa et al., 2013)

acid. From Figure 8(c) and Figure 8(d) show 
the resulted ChNC to collaborate with sodium 
lignosulfonate and silver nanoparticles to carry 
out catalytic degradation performance for model 
contaminants of Congo Red (Yang et al., 2020). 
The result was very good and this nanohybrid 
particle can be potentially used in the wastewater 
field.

Phosphoric acid

With the chemical formula H3PO4, phosphoric 
acid is a weak acid and has the appearance of an 
85% aqueous solution, which is a colorless, odorless, 
and non-volatile syrupy liquid. The route to make 
CNC using phosporic acid hydrolysis can be seen in 
Figure 9. The first CNC made by phosphoric acid 
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hydrolysis was introduced by Lemke et al (2012). 
They used bleached western red cedar kraft pulp as 
the raw materials to study the phase structure but 
not the characterization of the CNC.

Espinosa et al (2013) use this acid to hydrolyze 
Whatman no. 1 fitter paper and characterized the 
resulted CNC. They found that the CNC has length 
of 316 ± 127 nm, diameter of 31 ± 14 nm for the 
condition of 90 minutes at 100 °C with an H3PO4 
concentration of 10.7 M. Its crystallinity index 
reached 81% and the main concern of their research 
project was the thermal degradation of their CNC 
were reached 325oC as shown in Figure 9(c) and 
Figure 9(d). The yield reported was 76 – 80%. They 
also compared three kinds of CNC (phosphoric, 
hydrochloric, and sulfuric acid CNC), and they 
found that CNC made by hydrochloric acid has the 
best thermal stability among them and CNC made 
by sulfuric acid was the worst. The results of the 
thermal stability test of the CNC can be seen in 
Figure 9(b). 

Another work by Tang et al (2015) shows 
in Figure 9(a) phosphoric acid can be used as a 
combined method to produce CNC. They used old 
corrugated containers (OCC) as their raw materials 
and combined enzymatic process, phosphoric 
hydrolysis, and mechanical method (sonication). 
Enzymatic hydrolysis and mechanical treatment in 
these works could enhance yield, crystallinity, and 
thermal stability. The hybrid methods also reduced 
the length of the resulting CNC. The yield was 
increased almost 100%, crystallinity was increased 
from 54.3% to 57.8%, and the thermal stability was 
increased from 276 – 312oC.

Conclusion and Future Perspectives

As renewable and biodegradable biomaterials, 
chitin and cellulose are taking attraction and will 
continuously catch interest from both scientists 
and industry. Recent studies have mainly focused 
on the preparation of CNC and ChNC by liquid 
acid hydrolysis and less attention has been paid 
to the solid acid catalyst, especially for chitin 
nanoparticles. Solid acid hydrolysis is a promising 
method to extract CNC and ChNC from its 
natural resources. Many advantages can result 
from this method, especially the recycling ability 
and esterification during the hydrolysis process 
considering some of these acids have a dicarboxylic 
group. Many publications have been made for 
cellulose as the CNC raw materials by solid acid 
hydrolysis, but very few perspectives regarding 
chitin nanocrystals. This is an opportunity in the 
future to explore more about this material. Also, 

not so many applications of CNC and ChNC 
even though it has many positive characteristics. 
Despite the advantages, the major challenge for 
the preparation by solid acid hydrolysis is the 
low yield. To overcome this problem, hydrolysis 
needs to be combined with other methods, such 
as mechanical method, enzymatic process, or 
TEMPO-mediated oxidation process. These 
hybrid methods can deliver not only efficient 
preparation of nanocrystals based on targeted 
cleavage of certain bonds but also can give these 
polysaccharide-based nanocrystals to be more 
readily available and be used in broader fields and 
fulfill industrial feasibility.
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