Pembuatan dan Karakterisasi Dissolving Pulp Serat Panjang dari Bambu Duri (Bambusa blumeana)

Chandra Apriana Purwita(1*), Susi Sugesty(2)
(1) Center for Pulp and Paper, Ministry of Industry
(2) Center for Pulp and Paper, Ministry of Industry
(*) Corresponding Author


Preparation and Characterization of Long Fiber Dissolving Pulp from Spiny Bamboo (Bambusa blumeana)

The need for long fiber dissolving pulp in Indonesia can only be met from imports. Bamboo is a nonwood plant and known as source of long fiber. This research aims to study the potential of spiny bamboo to be used as raw material for producing long fiber dissolving pulp. This research was conducted using two different types of raw materials preparation to produce bamboo chip and decorticated bamboo. The pulping process is carried out by pre-hydrolysis kraft and bleaching performed with two different bleaching sequences, i.e Do ED1 D2 and Do EpD1 D2 . Based on the experimental results, spiny bamboo has good potential to be used as raw material for dissolving pulp. Spiny bamboo belongs to long fibers with an average fiber length of 2.46 mm. The dissolving quality depends on the preparation of the raw material and the bleaching sequence. The yield of spiny bamboo dissolving pulp ranged from 37.97 - 40.76% with alpha cellulose content of 94.88 - 98.67%, and viscosity of 16.43 - 25.75 cP. Decorticated bamboo with bleaching sequence of Do EpD1 D2 produced the highest quality of dissolving pulp with the highest brightness and alpha cellulose were 89.61% ISO and 98.67%, respectively.


Kebutuhan dissolving pulp serat panjang di Indonesia hanya dapat dipenuhi melalui impor. Bambu adalah tanaman nonkayu dan dikenal sebagai sumber serat panjang. Penelitian ini bertujuan untuk mempelajari potensi bambu duri untuk dijadikan bahan baku pembuatan dissolving pulp serat panjang. Penelitian ini dilakukan dengan dua jenis persiapan bahan baku yang berbeda untuk menghasilkan serpih bambu dan bambu dekortikasi. Proses pemasakan dilakukan dengan proses pra-hidrolisis kraft dan pemutihan dilakukan dengan dua urutan pemutihan yang berbeda, yaitu  DoED1D2 dan DoEpD1D2. Berdasarkan hasil penelitian, bambu duri memiliki potensi yang baik untuk digunakan sebagai bahan baku pembuatan dissolving pulp. Bambu duri tergolong serat panjang dengan panjang serat rata-rata 2,46 mm. Kualitas dissolving pup yang dihasilkan tergantung dari persiapan bahan baku dan urutan pemutihan. Rendemen dissolving pulp bambu duri berkisar 37,97 - 40,76%, dengan kandungan selulosa alfa 94,88 - 98,67%, dan viskositas 16,43 - 25,75 cP. Bambu dekortikasi dengan urutan pemutihan DoEpD1D2 menghasilkan dissolving pulp paling unggul dengan derajat cerah dan selulosa alfa tertinggi berturut-turut 89,61 %ISO dan 98,67%.

Kata kunci: dissolving pulp, bambu duri (Bambusa blumeana), serpih bambu, bambu dekortikasi, prahidrolisis kraft



dissolving pulp; bambu duri (Bambusa blumeana); serpih bambu; bambu dekortikasi; prahidrolisis kraft

Full Text:



Antes, R. and Joutsimo, O. P. (2015) ‘Effect of modified cooking on bleachability of Eucalyptus globulus and Eucalyptus nitens’, BioResources, 10(1), pp. 597–612.

Ariyanti, R. (2018) Kemenperin Berharap pada Industri Pulp Larut dan Rayon untuk Gantikan Impor 28. Available at: kemenperin-berharap-pada-industri-pulp-larut-dan-rayon-untuk-gantikan-impor (Accessed: 5 July 2018).

Ataç, Y. and Eroǧlu, H. (2013) ‘The effects of heartwood and sapwood on kraft pulp properties of Pinus nigra J.F.Arnold and Abies bornmuelleriana Mattf’, Turkish Journal of Agriculture and Forestry, 37(2), pp. 243–248. doi: 10.3906/tar-1205-20.

Batalha, L. A. R. et al. (2012) ‘Dissolving pulp production from bamboo’, BioResources, 7(1), pp. 640–651.

Biermann, C. J. (1996) Handbook of Pulping and Papermaking. 2nd edn. California: Elsevier Inc. doi: 10.1016/B978-012097362-0/50008-X.

Cao, S. et al. (2014) ‘Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production’, BioResources, 9(3), pp. 4528–4539.

Carrillo, I. et al. (2015) ‘Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density’, Wood Research, 60(1), pp. 1–10.

Castillo, R. del P. et al. (2015) ‘Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process’, Analytica Chimica Acta. Elsevier B.V., 866(January), pp. 10–20. doi: 10.1016/j.aca.2015.01.032.

Chen, C. et al. (2016) ‘Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review’, BioResources, 11(2), pp. 5553–5564. doi: 10.15376/biores.11.2.Chen.

Cotana, F. et al. (2014) ‘Production of bioethanol in a second generation prototype from pine wood chips’, Energy Procedia. Elsevier B.V., 45, pp. 42–51. doi: 10.1016/j.egypro.2014.01.006.

Dhamodaran, T. K., Gnanaharan, R. and Pillai, K. S. (2003) Bamboo for Pulp and Paper - A State of the Art Review, Working paper. Kerala.

Dransfield, S. and Widjaja, E. A. (1995) ‘Bamboos’, Plant Resource of South-East Asia, (7), p. 185.

Duan, C. et al. (2015) ‘Comparison of acid sulfite (AS)- and prehydrolysis kraft (PHK)-based dissolving pulps’, Cellulose. Springer Netherlands, 22(6), pp. 4017–4026. doi: 10.1007/s10570-015-0781-1.

Gallina, G. et al. (2016) ‘Optimal conditions for hemicelluloses extraction from Eucalyptus globulus wood: Hydrothermal treatment in a semi-continuous reactor’, Fuel Processing Technology. Elsevier B.V., 148, pp. 350–360. doi: 10.1016/j.fuproc.2016.03.018.

Gominho, J. et al. (2014) ‘Eucalyptus globulus stumpwood as a raw material for pulping’, BioResources, 9(3), pp. 4038–4049. doi: 10.15376/biores.9.3.4038-4049.

Gulsoy, S. K. and Ozturk, F. (2015) ‘Kraft pulping properties of European black pine cone’, Maderas. Ciencia y tecnología, 17(4), pp. 875–882. doi: 10.4067/S0718-221X2015005000076.

Gulsoy, S. K. and Tufek, S. (2013) ‘Effect of chip mixing ratio of Pinus pinaster and Populus tremula on Kraft pulp and paper properties’, Industrial & Engineering Chemistry Research, 52(6), pp. 2304–2308. doi: 10.1021/ie302709e.

Herrera, R. et al. (2014) ‘Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties’, Journal of Analytical and Applied Pyrolysis, 107, pp. 256–266. doi: 10.1016/j.jaap.2014.03.010.

Hiro, M. and Takahama, M. (1958) ‘Studies on manufacturing dissolving pulp from bagasse’, Bulletin of the Institute for Chemical Research, 36(5), pp. 172–180.

Hou, Y. et al. (2016) ‘Application of alkaline ionic liquids in the pretreatment process of eucalyptus kraft pulping’, Bio Resources, 11(4), pp. 9036–9046.

Javed, M. U. et al. (2014) Viscose Fiber Strength and Degree of Polymerization. Available at:

Kojima, Y. et al. (2014) ‘Photoyellowing of chemically modified chemithermomechanical pulps (CTMP) from Eucalyptus globulus under various atmospheres’, Holzforschung, 68(2), pp. 143–149. doi: 10.1515/hf-2013-0086.

Luo, X. et al. (2014) ‘Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo’, Cellulose, 21(3), pp. 1445–1457. doi: 10.1007/s10570-014-0234-2.

Ma, X. et al. (2011) ‘Preparation of bamboo dissolving pulp for textile production. Part 1. Study on prehydrolysis of green bamboo for producing dissolving pulp’, BioResources, 6(2), pp. 1428–1439.

Maya, C. and Narasimhamurthy (2015) ‘A study on chemical and anatomical properties of cultivated bamboo Thyrsostachys siamensis gamble.’, Journal of Global Biosciences, 4(1), pp. 1313–1319.

Miao, Q. et al. (2014) ‘A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment’, Bioresource Technology, 154, pp. 109–113. doi: 10.1016/j.biortech.2013.12.040.

Mutia, T. et al. (2014) ‘Potensi serat dan pulp bambu untuk komposit peredam suara’, Jurnal selulosa, 4(1), pp. 25–36.

Neiva, D. et al. (2015) ‘Chemical composition and kraft pulping potential of 12 eucalypt species’, Industrial Crops and Products, 66, pp. 30–30. doi: 10.1016/j.indcrop.2014.12.016.

Pinto, E. M. et al. (2016) ‘Thermal degradation and charring rate of and wood species’, The Open Construction and Building Technology Journal, 10(Suppl 3: M8), pp. 450–456. doi: 10.2174/1874836801610010450.

Poletto, M. (2016) ‘Effect of extractive content on the thermal stability of two wood species from Brazil’, Maderas. Ciencia y tecnología, 18(3), pp. 435–442. doi: 10.4067/S0718-221X2016005000039.

Reyes, P. et al. (2016) ‘Evaluation of combined dilute acid-kraft and steam explosion-kraft processes as pretreatment for enzymatic hydrolysis of Pinus radiata wood chips’, BioResources, 11(1), pp. 612–625. doi: 10.15376/biores.11.1.612-625.

Samistraro, G. et al. (2015) ‘Chemical, anatomical, and technology aspects of Eucalyptus benthamii and Eucalyptus dunii for use in an integrated pulp and paper mill’, Tappi Journal, 14(2), pp. 73–81.

Sharma, A. K. et al. (2011) ‘Anatomical, morphological, and chemical characterization of Bambusa tulda, Dendrocalamus hamiltonii, Bambusa balcooa, Melocana baccifera, Bambusa arundinacea and Eucalyptus tereticornis’, BioResources, 6(4), pp. 5062–5073.

Sixta, H. (2008) Handbook of Pulp, Handbook of Pulp. Weinheim: Wiley-VCH. doi: 10.1002/9783527619887.

Strunk, P. (2012) Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers. Umeå Universitet.

Sugesty, S., Kardiansyah, T. and Hardiani, H. (2015) ‘Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber’, Procedia Chemistry. Elsevier Ltd., 17, pp. 194–199. doi: 10.1016/j.proche.2015.12.122.

Tian, C. et al. (2013) ‘Improvement in the Fock test for determining the reactivity of dissolving pulp’, Tappi Journal, 12(11), pp. 21–26.

Truong, A. H. and Le, T. M. A. (2014) Overview of Bamboo Biomass for Energy Production. University of Sciences and Technologies of Hanoi. Available at: (Accessed: 1 May 2017).

Valenzuela, R. et al. (2016) ‘Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata’, Industrial Crops and Products. Elsevier B.V., 86, pp. 79–86. doi: 10.1016/j.indcrop.2016.03.037.

Varhimo, P. et al. (2012) ‘Brightness reduction of mechanical pulp in the wet end of a paper machine: Method development and validation’, Nordic Pulp & Paper Research Journal, 27(3), pp. 542–549. doi: 10.3183/NPPRJ-2012-27-02-p542-549.

Wan Rosli, W. D. et al. (2003) ‘Optimisation of soda pulping variables for preparation of dissolving pulps from oil palm fibre’, Holzforschung, 57(1), pp. 106–113. doi: 10.1515/HF.2003.017.

Xiang, H. L. and He, J. (2013) ‘Mechanisms and defiberation point of Pinus kesiya diethanolamine pulping’, Advanced Material Research, 807–809, pp. 505–508. doi: 10.4028/

Zhou, C. et al. (2015) ‘Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR’, Carbohydrate Polymers. Elsevier Ltd., 121(May), pp. 336–341. doi: 10.1016/j.carbpol.2014.11.062.

Article Metrics

Abstract view : 2209 times
PDF view : 285 times


  • There are currently no refbacks.

Copyright (c) 2018 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.