Variasi Konsentrasi Air Limbah Proses Pencucian Pulp pada Membraneless Air Cathode Microbial Fuel Cell

Krisna Adhitya Wardhana(1*), Agus Jatnika Effendi(2)
(1) Balai Besar Pulp dan Kertas, Kementerian Perindustrian
(2) Institut Teknologi Bandung
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v9i02.237

Abstract

Membraneless-Microbial Fuel Cell (ML-MFC) satu kompartemen dengan katoda kontak udara saat ini sedang dikembangkan dan menjadi alternatif solusi untuk sumber energi terbarukan yang mampu menghasilkan listrik dari proses degradasi substrat. MFC membutuhkan substrat yang kaya senyawa organik seperti air limbah dari proses pencucian pulp. Pada air limbah ini terdapat lindi hitam dalam kondisi terencerkan yang mengandung lignin dan kaya senyawa organik sehingga memiliki potensi untuk digunakan sebagai substrat dalam reaktor MFC. Selain itu, penggunaan substrat berupa air limbah industri memiliki efek yang baik terhadap lingkungan karena berkontribusi dalam pengurangan kontaminan. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi awal Chemical Oxygen Demand (COD) air limbah pencucian pulp sebagai substrat terhadap arus dan voltase listrik yang terjadi dalam MFC. Dalam penelitian ini, reaktor MFC mengolah air limbah pencucian secara batch dengan 4 variasi konsentrasi COD yaitu 613 mg/L, 833 mg/L, 940 mg/L, dan 1620 mg/L dengan pH 8,91 - 10,03. Hasil penelitian menunjukkan MFC mampu mereduksi COD air limbah pencucian pulp sebesar 34 - 48%. Terkait potensi listrik, akumulasi arus listrik yang terjadi pada MFC sebesar 12,67- 39,17 mA/m2 pada kisaran voltase tertinggi dari 4 reaktor sebesar 214 - 287 mV.

 

The Concentration Variation of Wastewater From Pulp Washing Process in Membraneless Air Cathode Microbial Fuel Cell


A one compartment Membraneless-Microbial Fuel Cell (ML-MFC) with an air cathode was recently developed and became alternative solution for renewable energy sources to generate electricity from substrate degradation. MFC needs proper substrate that was rich in organic content such as wastewater from pulp washing process. The wastewater contains black liquor that was already diluted and contains lignin and high organic content, so that it would be potential as MFC substrate. Furthermore, the utilization of industrial wastewater as substrate can contribute positive effect to the environment namely contaminant reduction. This research was conducted to understand the effect of initial Chemical Oxygen Demand (COD) concentration of wastewater from pulp washing process to electricity current and voltage occured from MFC. The wastewater from pulp washing process with 4 initial COD concentrations (61, 833, 940, and 1620 mg/L) and pH ranged from 8,91 to 10,03 were batch treated in a batch system using the MFC. The results showed that 34-48% COD removal can be performed by MFC. Related with electricity potency from MFC, electricity accumulation current happened on 12,67 mA/m2 - 39,17 mA/m2 at highest voltage from 4 reactors of 214-287 mV.

Keywords

ML-MFC; air cathode; pulp washing process wastewater; electricity

Full Text:

PDF

References

Bond, D. R. et al. (2002) ‘Electrode-reducing microorganisms that harvest energy from marine sediments’, Science, 295(5554), pp. 483–485. doi: 10.1126/science.1066771.

Botheju, D., Lie, B. and Bakke, R. (2010) ‘Oxygen effects in anaerobic digestion - II’, Modeling, Identification and Control, 31(2), pp. 55–65. doi: 10.4173/mic.2010.2.2.

Chen, T., Li, Y., Lei, L., Hong, M., Sun, Q. and Hou, Y (2016) ‘The influence of stock consistency on the pollution load in washing process’, BioResources, 11(1), pp. 2214–2223. doi: 10.15376/biores.11.1.2214-2223.

Cheng, S., Liu, H. and Logan, B. E. (2006) ‘Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells’, Environmental Science and Technology, 40(1), pp. 364–369. doi: 10.1021/es0512071.

Doma, H. S. and Abou-Elela, S. I. (2003) ‘Treatment of black liquor derived from non-woody feedstocks’, Transaction on Ecology and The Environment, 63, pp. 453–462.

Franks, A. E. and Nevin, K. P. (2010) ‘Microbial fuel cells, a current review’, Energies, 3(5), pp. 899–919. doi: 10.3390/en3050899.

Kim, S., Chae, K. J., Choi, M. J. and Verstraete, W. (2011) ‘Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation’, Environmental Engineering Research, 13(2), pp. 51–65. doi: 10.4491/eer.2008.13.2.051.

Logan, B. E. (2009) ‘Exoelectrogenic bacteria that power microbial fuel cells’, Nature Reviews Microbiology, 7(5), pp. 375–381. doi: 10.1038/nrmicro2113.

Lovley, D. R. and Nevin, K. P. (2008) ‘Electricity Production with Electricigens’, in Bioenergy. American Society of Microbiology, pp. 295–306. doi: 10.1128/9781555815547.ch23.

Mahendra, B. G. and Mahavarkar, S. (2013) ‘Treatment of wastewater and electricity generation using microbial fuel cell technology’, International Journal of Research in Engineering and Technology, pp. 2321–7308.

Nevin, K. P., Kim, B.-C., Glaven, R. H., Johnson, J. P., Woodard, T. L., Methé, B. A., DiDonato, R. J., Covalla, S. F., Franks, A. E., Liu, A. and Lovley, D. R. (2009) ‘Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells’, PLoS ONE. Edited by M. G.

Marinus, 4(5), p. e5628. doi: 10.1371/journal.pone.0005628.

Parkash, A., Aziz, S., Abro, M., Kousar, A., Soomro, S. A. and Jatoi, A. S. (2015) ‘Impact of agarose concentrations on electricity generation using hostel sludge based duel chambered microbial fuel cell’, Sci.Int.(Lahore), 27(2), pp. 1057–1061.

Pham, T. H., Jang, J. K., Chang, I. S. and Kim, B. H. (2004) ‘Improvement of cathode reaction of a mediatorless microbial fuel cell’, Journal of Microbiology and Biotechnology, 14(2), pp. 324–329.

Pramono, K. J., Wardana, K. A., Asthary, P. B. and . S. (2015) ‘Biokonversi bahan organik pada pengolahan air limbah industri pulp dan kertas menjadi energi listrik (ML-MFC)’, JURNAL SELULOSA, 5(1), pp. 39–46. doi: 10.25269/jsel.v5i01.77.

Shukla, S. K., Kumar, V., Kim, T. and Bansal, M. C. (2013) ‘Membrane filtration of chlorination and extraction stage bleach plant effluent in Indian paper Industry’, Clean Technologies and Environmental Policy, 15(2), pp. 235–243. doi: 10.1007/s10098-012-0501-6.

Tanikkul, P. and Pisutpaisal, N. (2015) ‘Performance of a membrane-less air-cathode single chamber microbial fuel cell in electricity generation from distillery wastewater’, in Energy Procedia. Elsevier Ltd, pp. 646–650. doi: 10.1016/j.egypro.2015.11.548.

Thung, W. E. et al. (2015) ‘A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater’, Bioresource Technology. Elsevier Ltd, 197, pp. 284–288. doi: 10.1016/j.biortech.2015.08.078.

Zhuwei, D., Qinghai, L., Meng, T., Shaohua, L. and Haoran, L. (2008) ‘Electricity generation using membrane-less microbial fuel cell during wastewater treatment’, Chinese Journal of Chemical Engineering, 16(5), pp. 772–777. doi: 10.1016/S1004-9541(08)60154-8.


Article Metrics


Abstract view : 71 times
PDF view : 43 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.