Optimasi Produksi Bacterial Nanocellulose dengan Metode Kultur Agitasi

Prima Besty Asthary(1*), Saepulloh Saepulloh(2), Ayu Sanningtyas(3), Gian Aditya Pertiwi(4), Chandra Apriana Purwita(5), Krisna Septiningrum(6)
(1) Balai Besar Pulp dan Kertas - Kementerian Perindustrian
(2) Balai Besar Pulp dan Kertas - Kementerian Perindustrian
(3) Balai Besar Pulp dan Kertas - Kementerian Perindustrian
(4) Balai Besar Pulp dan Kertas - Kementerian Perindustrian
(5) Balai Besar Pulp dan Kertas - Kementerian Perindustrian
(6) Balai Besar Industri Agro - Kementerian Perindustrian
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v10i02.295

Abstract

Hampir sebanyak 90% industri farmasi di Indonesia masih menggunakan bahan baku impor. Indonesia memiliki salah satu bahan baku yang cukup melimpah yaitu selulosa. Bacterial nanocellulose (BNC) adalah hasil sintesis dari bakteri aerobic seperti bakteri asam asetat Gluconacetobacter spp. yang berbentuk selulosa murni dengan diameter berukuran nano. Bahan baku BNC yang digunakan dalam industri farmasi adalah BNC dalam bentuk slurry atau high viscose nanocellulose. Tujuan penelitian ini adalah untuk memilih bakteri dan kondisi optimum dalam memproduksi BNC. Bakteri yang digunakan adalah Gluconacetobacter xylinus dan Gluconacetobacter intermedius yang berasal dari InaCC-LIPI dan Gluconacetobacter sp. dari industri nata de coco. Inokulum dari ketiga jenis kultur bakteri tersebut dikultivasi selama 7 hari dalam medium Hestrin&Schramm (HS) cair menggunakan kultur statis dan agitasi dengan kecepatan pengadukan 150 rpm pada pH 5 dan suhu 25 ºC. Isolat bakteri Gluconacetobacter sp. dipilih sebagai bakteri penghasil BNC karena memiliki nilai yield paling tinggi. Kemudian isolat tersebut ditumbuhkan pada variasi kecepatan agitasi (100, 150, dan 200 rpm), variasi pH (4,0; 4,5; 5,0; dan 6,0), dan variasi suhu (25-30 ºC). Penelitian ini menunjukkan bahwa Gluconacetobacter sp. memiliki kondisi optimum pada kecepatan agitasi 150 rpm, pH 5,5, dan suhu 27 ºC.

 

Optimization of Bacterial Nanocellulose Production in Agitation Culture Methods

Abstract

Almost 90% of pharmaceutical industry in Indonesia still uses imported raw material. However, Indonesia has one of the abundant raw materials which is cellulose. Bacterial nanocellulose (BNC) is a pure form of nanocellulose biopolymer material synthesized by microbes such as acetic acid bacteria of Gluconacetobacter spp. as pure cellulose and having diameter in nano scale. BNC used in pharmaceutical industry is in the slurry form/high viscose nanocellulose. The purpose of this study is to determine the bacteria and the optimum conditions to produce BNC. The bacteria used were Gluconacetobacter xylinus and Gluconacetobacter intermedius from InaCC-LIPI and Gluconacetobacter sp. from nata
industry. The inoculums were cultivated for 7 days in liquid Hestrin & Schramm (HS) medium using static and agitation culture with a stirring speed of 150 rpm at pH 5 and temperature 25 ºC. The production of BNC has been conducted by using Gluconacetobacter sp., because it has the highest yield. Then it was inoculated at different variation of agitation speed (100, 150, and 200 rpm), pH (4.0; 4.5; 5.0; and 6.0), and temperature (25-30 ºC). This research shows that Gluconacetobacter sp. has optimum conditions at the agitation speed of 150 rpm, pH 5.5, and temperature 27 ºC.

Keywords: Bacterial nanocellulose, Gluconacetobacter, agitation

Keywords

Bacterial nanocellulose; Gluconacetobacter; agitasi;

Full Text:

PDF

References

Atalla, R. H., & Vanderhart, D. L. (1984). Native cellulose: a composite of two distinct crystalline forms. Science, 223, 283–285.

Benson, H. . (2001). Microbiological Application (8th ed.). Boston: The McGraw-Hill Companies.

Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40(2), 137–143. https://doi.org/10.1016/S0144-8617(99)00050-8

Castro, C., Zuluaga, R., Álvarez, C., Putaux, J. L., Caro, G., Rojas, O. J., Mondragon, I., & Gañán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033–1037. https://doi.org/10.1016/j.carbpol.2012.03.045

Chen, G., Wu, G., Chen, L., Wang, W., Hong, F. F., & Jönsson, L. J. (2019). Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH. Carbohydrate Polymers, 215(February), 280–288. https://doi.org/10.1016/j.carbpol.2019.03.080

Coban, E. P., & Biyik, H. (2011). Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. African Journal of Microbiology Research, 5(9), 1037–1045. https://doi.org/10.5897/ajmr11.008

Czaja, W., Romanovicz, D., & Brown, R. malcolm. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11(3/4), 403–411. https://doi.org/10.1023/b:cell.0000046412.11983.61

Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C. A., Trica, B., Moraru, A., & Oancea, F. (2017). Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers, 9(8), 5–10. https://doi.org/10.3390/polym9080374

Donini, Í. A. N., De Salvi, D. T. B., Fukumoto, F. K., Lustri, W. R., Barud, H. S., Marchetto, R., Messaddeq, Y., & Ribeiro, S. J. L. (2010). Biossíntese e recentes avanços na produção de celulose bacteriana. Ecletica Quimica, 35(4), 165–178. https://doi.org/10.1590/S0100-46702010000400021

Fu, L., Zhang, J., & Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 92(2), 1432–1442. https://doi.org/10.1016/j.carbpol.2012.10.071

Gatenholm, P., & Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bulletin, 35(3), 208–213. https://doi.org/10.1557/mrs2010.653

Gayathry, G., & Gopalaswamy, G. (2014). Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research, 39(1), 93–96.

Gullo, M., Sola, A., Zanichelli, G., Montorsi, M., Messori, M., & Giudici, P. (2017). Increased production of bacterial cellulose as starting point for scaled-up applications. Applied Microbiology and Biotechnology, 101(22), 8115–8127. https://doi.org/10.1007/s00253-017-8539-3

Gupta, A., Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., & Radecka, I. (2020). Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules, 21(5), 1802–1811. https://doi.org/10.1021/acs.biomac.9b01724

Hu, Y., & Catchmark, J. M. (2010). Formation and characterization of spherelike bacterial cellulose particles produced by acetobacter xylinum JCM 9730 strain. Biomacromolecules, 11(7), 1727–1734. https://doi.org/10.1021/bm100060v

Hutchens, S. A., León, R. V., O’Neill, H. M., & Evans, B. R. (2008). Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Letters in Applied Microbiology, 44(2), 175–180. https://doi.org/10.1111/j.1472-765X.2006.02055.x

Hwang, J. W., Yang, Y. K., Hwang, J. K., & Pyun, Y. R. (1999). Effects of pH and Dissolved Oxygen on Cellulose Production by Acetobacter xylinum BRCS in Agitated Culture. JOurnal of Bioscience and Bioengineering, 88(2), 183–188.

I

ndrianingsih, A., Rosyida, V., Jatmiko, T., Prasetyo, D. J., Peloengasih, C. D., Apriyana, W., Nisa, K., Nurhayati, S., Hernawan, H., Darsih, C., Pratiwi, D., Suwanto, A., & Ratih, D. (2017). Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut wate. Iopscience.Iop.Org, 8(February 2018), 68–74. https://doi.org/10.1088/1755-1315

Joseph, G., Rowe, G. E., Margaritis, A., & Wan, W. (2003). Effects of polyacrylamide-co-acrylic acid on cellulose production by Acetobacter xylinum. Journal of Chemical Technology and Biotechnology, 970(April), 964–970. https://doi.org/10.1002/jctb.869

Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063–2072. https://doi.org/10.1007/s00253-015-7243-4

Jozala, A. F., Pértile, R. A. N., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A. (2014). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition, 50(24), 5438–5466. https://doi.org/10.1002/anie.201001273

Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Progress in Polymer Science (Oxford), 26(9), 1561–1603. https://doi.org/10.1016/S0079-6700(01)00021-1

Kost, J., Wiseman, D., & Domb, A. J. (1998). Handbook of biodegradable polymers. CRC Press.

Kouda, T., Yano, H., & Yoshinaga, F. (1997). Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. Journal of Fermentation and Bioengineering, 83(4), 371–376. https://doi.org/10.1016/S0922-338X(97)80144-4

M. Iguchi;, S. Yamanaka;, & A. Budhiono; (2000). Bacterial cellulose - a masterpiece of nature’s arts. Journal of Materials Science, 35(2), 261–270. https://doi.org/10.1023/A

Malvianie, E., Pratama, Y., & Salafudin, S. (2014). Fermentasi Sampah Buah Nanas menggunakan Sistem Kontinu dengan bantuan Bakteri Acetobacter Xylinum. Reka Lingkungan, 2(1), 1–11.

Mohammadkazemi, F. (2015). Surface Properties of Bacterial Nanocellulose Using Spectroscopic Methods and X-Ray Diffraction. American Journal of Applied and Industrial Chemistry, 1(2), 10–13. https://doi.org/10.11648/j.ajaic.20150102.11

Mohite, B. V., Salunke, B. K., & Patil, S. V. (2013). Enhanced production of bacterial cellulose by using gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Applied Biochemistry and Biotechnology, 169(5), 1497–1511. https://doi.org/10.1007/s12010-013-0092-7

Muller, A., NI, Z., Nadine, H., Wesarg, F., Muller, F. A., Kralisch, D., & Fischer, D. (2013). The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. Journal of Pharmaceutical Sciences, 102(7), 579–592. https://doi.org/10.1002/jps

Nakagaito, A. N., Iwamoto, S., & Yano, H. (2005). Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A, 80(1), 93–97. https://doi.org/10.1007/s00339-004-2932-3

Numata, Y., Sakata, T., Furukawa, H., & Tajima, K. (2015). Bacterial cellulose gels with high mechanical strength. Materials Science and Engineering C, 47, 57–62. https://doi.org/10.1016/j.msec.2014.11.026

Pa’e, N., Zahan, K. A., & Muhamad, I. I. (2011). Production of Biopolymer from Acetobacter xylinum Using Different Fermentation Methods. International Journal of Engineering & Technology, IJET-IJENS(October), 90–98.

Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969–1975. https://doi.org/10.1002/(sici)1097-4628(19990321)71:12<1969::aid-app6>3.3.co;2-4

Pavaloiu, R. D., Stoica-Guzun, A., Stroescu, M., & Dobre, T. (2014). Use of bacterial cellulose as reinforcement agent and as coating agent in drug release applications. Revista de Chimie, 65(7), 852–855.

Pötzinger, Y., Kralisch, D., & Fischer, D. (2017). Bacterial nanocellulose: The future of controlled drug delivery? Therapeutic Delivery, 8(9), 753–761. https://doi.org/10.4155/tde-2017-0059

Shoda, M., & Sugano, Y. (2005). Recent Advance in Bacterial Cellulose Production. Biotechnology and Bioprocess Engineering, 10, 1–8.

Simanjuntak, R. (2016). Pengawasan Bahan Baku Obat Untuk Mendukung Kemandirian Bahan Baku Obat. In Seminar Pentahelix Kemandirian Bahan Baku Farmasi serta Lanching Information and Data Center. Jatinangor: Universitas Padjajaran.

Singhsa, P., Narain, R., & Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571–1581. https://doi.org/10.1007/s10570-018-1699-1

Son, H.-J., Heo, M.-S., Kim, Y.-G., & Lee, S.-J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnology and Applied Biochemistry, 33(1), 1. https://doi.org/10.1042/ba20000065

Tanskul, S., Amornthatree, K., & Jaturonlak, N. (2013). A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydrate Polymers, 92(1), 421–428. https://doi.org/10.1016/j.carbpol.2012.09.017

Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K., & De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1–3), 93–99. https://doi.org/10.1016/s0141-3910(97)00185-7

Watanabe, K., Tabuchi, M., Yasushi, M., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.

Yue, Y., Han, J., Han, G., Zhang, Q., French, A. D., & Wu, Q. (2015). Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydrate Polymers, 133, 438–447. https://doi.org/10.1016/j.carbpol.2015.07.058

Zahan, K. A., Pa’e, N., & Muhamad, I. I. (2015). Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor. Arabian Journal for Science and Engineering, 40(7), 1881–1885. https://doi.org/10.1007/s13369-015-1712-z

Zywicka, A., Peitler, D., Rakoczy, R., Konopacki, M., Kordas, M., & Fijałkowski, K. (2015). The Effect of Different Agitation Modes on Bacterial Cellulose Synthesis. Acta Sci. Pol. Zootechnica, 14(1), 137–150.


Article Metrics


Abstract view : 94 times
PDF view : 47 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.